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ABSTRACT  
In these notes, three main application lines for context in Information Fusion will be presented. In the first, 
context-aware target tracking will be briefly introduced with references to available works in the literature. 
The more extended second part will discuss the role of context in inference for Situation Assessment in a 
maritime scenario. The framework of Markov Logic Networks will be applied for fusing relational 
information coming from heterogeneous sources. In the third part, a de-contextualization case will be 
discussed for military intelligence reasoning. 

1.0 CONTEXT FOR TARGET TRACKING 

This section briefly discusses how context can be applied to target tracking. Since a good number of context-
aware tracking solutions exist in the literature [1], [2] and given the limited space available here, the topic 
will be here only introduced by briefly discussing a possible architecture [3]. The Resource Management 
Module (RMM) presented is intended to be part of an engine for multi-sensor fusion which is able to 
combine observations from multiple and possibly heterogeneous sensors for tracking and classification. 
These two tasks are the main duties of the engine supported by a contextual database that encodes a priori 
knowledge on the observed environment (e.g. map of the area, weather map, etc.). The RMM would be in 
charge of assigning a quality measure to the measurements generated by the sensors considering possible 
contextual effects that may hamper their performance. The architecture is deliberately very simple for sake 
of introducing here the topic. The already cited references above provide pointers to algorithmic solutions 
available in the literature. Additional details on the architecture presented here can be found in [3]. A more in 
depth and general discussion on context-aware fusion architectures can be found in [4]. 

The overall RMM processing chain is shown in Figure 1. The module receives observations from sensors 
and contextual information as inputs. A first selection step is performed at this point by weighting or 
discarding sensor measurements that are likely to be false alarms (e.g. noise, reflections, etc.). This is 
particularly true for tracking, since position measurements can be easily checked against spatial and 
structural constraints. Observations validated by context are then evaluated for the information gain they 
could provide to the estimate computed by the engine at the previous time instant regarding a given target. 
According to their informative value, a subset of all the measurements is selected and passed to the fusion 
engine that will generate the new estimate. This loop is repeated for each collection of new observations 
received by the sensors. 
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Figure 1: Data Flow Through Modules. The filtering step is performed  
through the exploitation of contextual information into the RMM. 

The RMM will consider the problem of assessing to which extent the measurements coming from a sensor 
should be used in the fusion process by modelling the associated information gain. This second step is here 
included to model a possible calculation of the relevance [5] of a given observation for the fusion process. 

In an ideal framework, this applies to several tasks as, for instance, Tracking and Classification. With this 
respect, even if couched in the same framework, tracking and classification can be treated separately even if 
readings are coming from the same platform. For instance, there can be a sensor that provides very good 
localization with a poor associated classification result, and it can be used for tracking but not for 
classification. Conversely, one source may provide good data for recognition, but at the same time being 
affected by large localization errors. In this case, the sensor output can be used for classification but not for 
localization. In the following, we will discuss the how the filtering step could be performed for the tracking 
process by taking advantage of available contextual information. 

Considering the available scenario information, a pre-filtering phase can be used to remove very uncertain 
observations, considering variables as weather or time of the day. Imagine, for instance, the case of a target 
moving along a city street and suppose that we want to estimate its state x as the vector of Cartesian 
bidimensional coordinates. Suppose now that the observation z(t) at time t is checked against an urban map 
of the monitored area resolving z(t+1) as falling inside a building. Now, given the fact that we know that the 
sensor has no see-through-walls capability, this could be explained as an occasional quirk of the sensor and 
could be easily filtered out by the tracking algorithm (e.g. Kalman filter, particle filter, etc.). Especially if z(t) 
is resolved inside a building while both the previous state x(t-1) and the next measurement z(t+1) do not. 

Unfortunately, in real-world monitoring applications it often happens that a sensor provides a sequence of 
unreliable observations due to partial occlusion of the target, unfavourable weather conditions, sun blinding, 
persistent reflections, etc. In these cases, tracking can be severely disrupted providing an unreliable estimate 
of the target’s position and trajectory. 

The pre-filtering step exploits, therefore, different and diversified contextual information as a means to filter 
observations, as shown in Figure 2. The aim of integrating contextual information into tracking systems is to 
better refine and optimize the task according to the observations provided by the sensors and to prior high-
level knowledge of the environment, which is coded as context. Contextual information can be a key factor 
in determining the state of an entity of interest, as it can dramatically impact on the reliability of an 
observation. 
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Figure 2: Measurements Received from Multiple Sensors  
are Filtered According to Contextual Information. 

Checking the measurements against a map of the monitored area is a form of contextual knowledge inclusion 
that could, as in the latter example, provide an insight on the reliability of the sensor in a specific situation. 
Knowing the sensing capabilities of a sensor is another form of contextual knowledge that could be exploited 
conveniently. In the previous example, knowing that the sensor has no see-through-walls capability and the 
fact that the last few measurements fall inside a building can help us in concluding that those measurements 
may be affected by a form of bias and thus be unreliable. The sensor may be in fact persistently experiencing 
one or more of the disturbing conditions mentioned above. 

To be strict, one can discard the sensors that give measurements not compatible with the reliability assigned 
by contextual information, adopting thus a pruning strategy. Alternatively, instead of getting rid of sensors 
observations, the measurements can be combined by weighting them (discounting) with respect to the 
reliability factor given by context analysis.  

For more details, the reader is referred to surveys of context-aware tracking algorithms can be found in [1], 
[2], while [7] can serve as a tutorial on the topic.  

2.0 CONTEXT FOR SITUATION ASSESSMENT 
The Situation Assessment (SA) process in Information Fusion (IF) security systems has a clear goal: 
building and updating a situational picture of the scenario under consideration. In the maritime domain, the 
scenario is generally very dynamic in time and comprises a large number of entities and actors operating in a 
complex environment. SA aims at explaining the observed events (mainly) by establishing the entities and 
actors involved, inferring their goals, understanding the relations existing (permanently or temporarily) 
between them, the surrounding environment, and past and present events. It is therefore evident how the SA 
process inherently hinges on understanding and reasoning about relations. SA processes are particularly 
complex and critical for large-scale scenarios such as those related to border and port security, where 
suspicious activities need to be detected as the needle in a haystack of largely predominant “pattern of life” 
activities.  

Here, we are particularly interested in representing and reasoning about relations and events. This would 
allow the system to be able to capture the relationships existing between elements of the scenario via the 
recognition of sequences of events (complex events) that encode situations of interest with possible 
dangerous/disastrous outcomes. 

We will here provide a summary on our ongoing work [8] on applying methods belonging to the rapidly 
growing area of Statistical Relational Learning to the task of SA in information fusion systems. Specifically, 
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we will discuss how within the framework of Markov Logic Networks (MLNs) different types of complex 
relational knowledge (e.g. contextual) with associated uncertainty can be fused together along with 
observational data for event understanding  

2.1 State-of-the-Art 
State-of-the-art situation assessment (SA) systems are able to deal with vast amounts of data and information 
also of a heterogeneous kind. Their goal is to provide a constantly updated situational picture about the 
observed environment or set of entities to an operator in order to facilitate human decision making. Updating 
the current system representation of the situation is generally performed by acquiring, through sensors or 
other sources of information, new observations which provide a possibly incomplete and uncertain view. 

Currently, low-level sensory data is the main source of information used to understand the observed evolving 
scenario and to identify anomalous conditions; in particular, up to now maritime surveillance heavily relies 
on the Automatic Identification System (AIS), coastal radars, space-based imagery, and other sensors, to 
form a picture in which the operator can recognize complex patterns and make decisions.  

The common thread that unites many works in the literature (see [8] for a recent literature review) is the 
definition of an expert system, that aims at detecting a set of anomalous behaviours or potential threats. 
Subject matter experts define a knowledge base (KB), which comprises the possible abnormal patterns the 
target could follow; then, on the top of it, a reasoning engine queries the occurrence of an anomaly for a 
target object in an arbitrary time instant.  

The reasoner is usually fired by low-level observations provided by sensors, covering in this way the 
majority of abnormal situations in the domain; however, it is interesting to notice how anomalous behaviours 
do not always follow standard trends or well-known patterns, especially if related solely to vessels 
movements, but sometimes they take the form of seemingly unrelated activities on a larger scale [9]. Ship-
centric focus should be replaced by a broader vision, where the ideal situational awareness system should 
then be flexible and adaptive enough to integrate both low-level and high-level information (Figure 3), 
detecting anomalous or suspicious conditions by reasoning on manifest or uncertain data, but also on 
(apparently irrelevant) relations among objects, which may reveal unobserved coincidences. This requires 
the interplay of both deductive and abductive inferencing processes. How this involvement can be obtained, 
on both theoretical and applicative levels, is a crucial point, and is subject of ongoing research [13], [10]. 

 

Figure 3: In Situation Awareness for Maritime Domain. Sensory data  
must be coupled with high-level information and contextual data. 
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The maritime domain is a daunting scenario for testing such systems, because of many factors:  
• Its challenging nature where the coverage of wide areas is given by discontinuous and intermittent 

sensory data; 
• Its well-known commercial policies and practices which can suggest normalcy behaviour patterns; 
• The presence of local contextual information, stable in time, which can depict alternative indicators 

of multi-layered situations; and 
• The urgency for systems capable to provide effective and advanced warning to promote 

countermeasures to illicit activities. 

The integration of contextual knowledge can greatly enhance the performance of an SA system [8]. Despite 
its value, the representation and use of context is often poorly integrated, if not absent, even if the richness 
and completeness of this information is extremely useful to properly interpret the available stream of raw 
sensor data from a multitude of points of view (security, safety, economical or environmental situation, etc.).  

Qualitative high-level knowledge can help to infer about hidden states from low-level data generated by 
sensors, other fusion processes or human reports. In other words, context is a powerful means to picture a 
broader and deeper operational situation, as it can reduce uncertainties where normally analysts would need 
to be consulted. 

In these notes, we show how MLNs can be exploited to encode uncertain knowledge, fuse data coming from 
multiple (and possibly heterogeneous) sources, and perform reasoning on incomplete data. One key point of 
using the MLNs for reasoning is their ability to reason with incomplete or missing evidence, which is a 
crucial feature hardly found in other approaches, but sought after especially in the maritime domain, where 
the data is often inaccurate, delayed or simply not available. Another advantage with respect to other 
systems, is the fact that MLNs support inconsistencies or contradictions in the knowledge base, which is a 
problem when different experts provide contributes to it. This avoids non-trivial knowledge engineering 
techniques to be performed in order to guarantee rules consistency.  

Here we use Markov Logic Networks (MLNs) [11] to detect two possible anomalous conditions in maritime 
domain, a rendezvous at sea and a hazardous combination of cargo ships in a harbour.  

We use exemplary scenarios, the first one derived from experts’ suggestions gathered at the NATO STO 
Centre for Maritime Research and Experimentation and the second one expanded from [12], to highlight 
how unobserved complex events could be built by logical combination of simpler evidence, and how 
contextual information is extremely valuable in many conditions. 

MLNs present advantages suited to our domain as they:  

• Support reasoning with missing or partial observations (incomplete evidence), they allow to encode 
expert rules and relational knowledge with an associated degree of uncertainty; 

• Are able to encode the relational knowledge among objects and entities in the scenario; and 

• Are able to handle contradictions and inconsistencies. 

In the following, we would like to show how to tap via MLNs the expressive power of first-order logic 
(FOL) and the probabilistic uncertainty management of Markov networks in order to detect anomalies via 
reasoning on uncertain knowledge. Specifically, the following points will be discussed: 

• Clarifying the concepts of event (simple and complex) and anomaly in the scope of fusion 
terminology; 

• Explicitly explaining how simple and complex events can be encoded in the form of FOL formulas 
with associated degree of uncertainty in maritime domain; 
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• Demonstrating how MLNs could provide a powerful tool for fusing heterogeneous sources (e.g. a 
priori, contextual, sensory, etc.) of information for situation assessment by being able to express 
unobserved complex events by logical combination of simpler evidences; and 

• Developing a mechanism to evaluate the level of completion of complex events as this calculation is 
not directly solvable within the MLNs framework. 

2.2 Events and Anomalies 
Events and anomalies can be considered fundamental building blocks for developing an informed situational 
picture of the environment. In this section, we briefly provide the necessary definitions of these concepts. 
Further details and discussion can be found in [8]. 

For our purposes, an event is a “significant occurrence or happening”. It can be subdivided in simple, when 
we consider the variation of a quantity or state, or complex, which is a combination of atomic or complex 
activities.  

An anomaly can be considered a critical event to which the system is generally called to react to. Anomalies 
can be simple events (like in the case of an observable quantity, e.g. oil pressure, measured by an instrument 
that passes a critical threshold) or complex ones (e.g. hydraulics failure). In the perspective of preventing 
anomalies, the SA system might require some form of reasoning to be performed in order to anticipate 
possible dangerous events before they happen. 

Following the description given in the above sections and taking into account JDL levels [13], our position 
here is that whenever the system detects any appreciable variation of input data of any level, a corresponding 
event is generated. Table 1 shows some examples of events generated from data at different levels. For 
instance, the detection of presence or absence of AIS signal is something that can be considered at the 
bottom of the JDL hierarchy, while the speed of a vessel is a feature of its state and belongs to Level 1. Two 
stopped vessels very close out at sea is a relation between two entities and helps defining the current situation 
(JDL level 2). It is not true then, that, to flag a situation as anomalous, data and information have to bubble 
up through the levels following increasing processing and refinement steps. Anomalies can be generated 
from data of every kind and level as shown in Table 1. For example, the absence of AIS signal can be 
directly considered something anomalous, as well as a speeding boat or a rendezvous out at sea. Also, 
anomalies could be generated both from simple and complex events. 

Table 1: Examples of Events and Anomalies at Different JDL Levels [8]. 

Level Event Type Anomaly 

0 Absence of AIS signal Simple AIS off 

1 Vessel increased speed Simple Vessel over speed limit 

2 Vessel X stopped, Vessel Y stopped, 
Vessel X and Y are close 

Complex Rendezvous 

2.3 Markov Logic Networks 
The probabilistic reasoning framework of Bayesian networks, despite their widespread use in the past years, 
is unable of representing large and complex domains. That is, the number of random variables associated to 
the objects in the domain needs to defined in advance. The same is true for the relationships holding between 
the variables. Therefore, a large and dynamic domain with a varying number of entities and complex 
relationships evolving in time cannot be properly be represented by a Bayesian network, which are thus 
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propositional in nature. We highlight here the capabilities of the recent Statistical Relational Learning 
framework of Markov Logic Networks for SA in maritime scenarios. We here briefly provide essential 
background notions of MLNs, while full details can be found in [11].  

An MLN provides an explicit way of encoding knowledge and combining logical and probabilistic 
reasoning. In First-order Logic, a knowledge base KB of logic formulas is satisfiable only if exists at least 
one world (truth value of atomic formulas) in which KB is true. A MLN relaxes this hard constraint by 
associating a probability value to the worlds that do not fully satisfy the KB. Therefore, the fewer formulas a 
given world violates the more probable it is. 

An MLN is a set L of pairs (𝐹𝐹𝑖𝑖,𝑤𝑤𝑖𝑖) where 𝐹𝐹𝑖𝑖 is a FOL formula and 𝑤𝑤𝑖𝑖 its corresponding real-valued weight. 
The set of all formulas 𝐹𝐹𝑖𝑖 in L constitutes the KB while the weight 𝑤𝑤𝑖𝑖 associated to each formula reflects 
how strongly the constraint imposed by the formula is to be respected. The weights influence directly the 
probability assignment: worlds (that is, truth-value assignments of atomic formulas) which satisfy a high 
weight formula are going to be much more probable than those that do not. 

A Markov Logic Network L together with a finite set of constants C defines a Markov network ML,C that 
models the joint distribution of the set of random (binary) variables 𝑋𝑋 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛)  ∈  𝒳𝒳. Each 
variable of 𝑋𝑋 is a ground atom (predicate whose arguments contain no variables) and 𝒳𝒳 is the set of all 
possible worlds, that is the set of all possible truth value assignments of n binary variables. The network is 
built as follows: 

• ML,C contains one (binary) node for each possible ground atom given L and C; and 

• An edge between two nodes indicates that the corresponding ground atoms appear together in at 
least one grounding of one formula in L. Ground atoms belonging to the same formula are connected 
to each other thus forming cliques. 

A feature 𝑓𝑓𝑖𝑖 is associated for each possible grounding of a formula 𝐹𝐹𝑖𝑖 in L. Each 𝑓𝑓𝑖𝑖 assumes value 1 if the 
corresponding ground formula is true and 0 otherwise.  

The probability distribution over 𝑋𝑋 assuming values x is specified by ML,C is given by: 

 𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 1
𝑍𝑍

exp �∑ 𝑤𝑤𝑖𝑖
|𝐿𝐿|
𝑖𝑖=1 𝑛𝑛𝑖𝑖(𝑥𝑥)� (1) 

where |L| indicates the cardinality of L, thus counting the number of formulas of the knowledge base, and 
𝑛𝑛𝑖𝑖(𝑥𝑥) is the number of true groundings of 𝐹𝐹𝑖𝑖 in the world x. 

 Z= ∑ exp �∑ 𝑤𝑤𝑖𝑖
|𝐿𝐿|
𝑖𝑖=1 𝑛𝑛𝑖𝑖(𝑥𝑥′)�x′∈𝒳𝒳  (2) 

is a normalizing factor often call partition function. Given the joint distribution function in Eq. (1), it is 
possible to calculate the probability that a given formula 𝐹𝐹𝑖𝑖 holds given the Markov Network ML,C as 
follows: 

 𝑃𝑃�𝐹𝐹𝑖𝑖|𝑀𝑀𝐿𝐿,𝐶𝐶  � = ∑ 𝑃𝑃�𝑋𝑋 = 𝑥𝑥|𝑀𝑀𝐿𝐿,𝐶𝐶  �𝑥𝑥∈𝒳𝒳𝐹𝐹𝑖𝑖
= 1

𝑍𝑍
exp �∑ 𝑤𝑤𝑖𝑖𝑥𝑥∈𝒳𝒳𝐹𝐹𝑖𝑖

𝑛𝑛𝑖𝑖(𝑥𝑥)�  (3)  

where 𝑥𝑥 ∈ 𝒳𝒳𝐹𝐹𝑖𝑖 is the set of worlds where 𝐹𝐹𝑖𝑖 holds. 

While Eq. (1) provides the probability of configuration x of truth values for the ground atoms in the Markov 
Network, Eq. (3) can be used instead to evaluate the probability that a formula 𝐹𝐹𝑖𝑖 (e.g. a predicate 
representing an event) holds given ML,C where C is composed by observed entities and other constants. This 
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gives a glimpse of the power of the framework, an arbitrary formula that can be grounded can be queried to 
get the probability of being true. Thus not only the formulas in L but also any logical combination of them 
that can be grounded in the Markov network can be queried as well. This is extremely important for a SA 
system where the operator might want to evaluate the truth degree of a new (complex) event or condition as 
the combination of existing evidence in the KB. 

2.4 Hazmat Example Scenario 
In this section, the hazmat example scenario and experimental results from [8] are summarized. The scenario 
describes several cargo ships heading toward a harbour. Some of the ships carry chemical or generic 
hazardous materials (hazmat), as, for instance, bleach and ammonia, that when combined may cause a severe 
threat [12]. The ships are assigned berths in a row, and will be in the harbour before others or at the same 
time.  

The entities in our examples are, as shown in Figure 4, cargo, harbour, material and berth, which are linked 
together by the fact that the cargo ship, carrying some hazardous material (hazMat, which can be dangerous 
if combined with other sensitive material) is heading (isHeadingTo) toward a certain harbour, in which has a 
berth. The predicate hasBerth takes a triplet of harbour, vessel and berth as argument to bound the three 
classes. The berth has a predicate adjBerth, which is important to indicate that two vessels are moored in 
adjacent berths, and thus are neighbours. 

 

Figure 4: Entities and Relations of the Proposed “Hazmat” Maritime Example [8]. 

Instead of the seven original predicates (before(v1,v2), meets(v1,v2), overlaps(v1,v2), starts(v1,v2), during(v1,v2), 
finishes(v1,v2) and isEqualTo(v1,v2), which define time of permanence at berths of the two ships v1, and v2, we 
shorten the list to before(v1,v2), meets(v1,v2) and overlaps(v1,v2), as these are the most frequent time relations 
between ships permanence times. In fact, a ship can leave a harbour before another comes in, thus the two 
vessels do not meet. Alternatively, it can stay moored for a long time, which overlaps with other vessels 
permanence. One more case is represented by the meeting event, that happens if a vessel leaves just after 
another one arrives; this situation is relevant as the cargo content may not be fully processed, and still placed 
on the berth, thus allowing interactions with other ships contents. Other temporal definitions in our domain 
can be considered special cases of the overlap relation. These predicates, that are binary relations, are 
important as they allow us to properly model the scenario time line and the causality between successive 
events. 

2.4.1 Knowledge Base 

The domain knowledge can be formalized with FOL formulas, described in Table 2, where the higher the 
weight the more confident the statement. The strength of the rules is expressed proportionally to a base 
weight ω. Weights can be expressed according to experts’ knowledge or learned directly from data [11], [8]. 
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Table 2: Knowledge Base for the Hazmat Scenario in FOL with Associated Weights [8].  

 

The first six rules (#1-#6) codify the symmetry among elements, and are useful to avoid sorting items. Rule 
#7 states that two vessels that meet or overlap are concurrent in time, simplifying the concept of 
“simultaneous” or “operative/moored at the same time”. The opposite condition (#8) or the case when one 
vessel arrives or leaves before (#9) others define having no interaction with other ships in the scenario (being 
not concurrent). If two vessels are not concurrent, they do not represent a threat (#10). 

Referring to spatial relationship, a cargo that is heading toward a harbour will have a berth assigned (#11), 
and two vessels in the same harbour will be neighbours only if they will share adjacent berths (#12). If two 
vessels are not neighbours, they cannot generate an alarm (#13), as well as if they transport cargo materials 
that are not dangerous when combined (#14). 

The main threat can be defined by the rule for which two neighbour cargo ships carry hazmats that are 
potentially dangerous if combined (#15). In this case, the cargo ships share adjacent berths and are moored in 
the harbour at the same time. 

2.4.2 Contextual Information 

Probabilistic knowledge must be integrated with explicit contextual knowledge, as sensory data may be not 
enough to represent and identify complex situations. A simple low-level anomaly detector would not detect 
the aforementioned threat, as two cargo ships which enter in a harbour, even carrying hazmats, for 
commercial reasons raise no alarm. However, additional information provided by context can help to identify 
a suspicious event. 

Context, as described in detail in Table 3, is comprised by scenario-dependent information, which is: 

• A harbour H1 has four berths B1,…,B4, and some of the berths are adjacent. The exact map of 
adjacent berths can be provided by a human operator. In our case, we codify the proximity with a set 
of symmetric rules. We suppose, as shown in Figure 5, that berths B1 and B2 are adjacent, as well as 
B3 and B4, and B4 and B5; and 

• Some materials defined by M, if combined together, are dangerous or potentially lethal. This 
information must necessarily be provided by a SME, as it cannot directly be inferred from materials 
only. In our example, we suppose that (M1, M2), (M2, M3) and (M2, M4) are dangerous combinations. 
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Table 3: Contextual Information Provided a priori for the “Hazmat” Scenario. Apart from harbour 
and its facilities, the description of dangerous combinations of materials is provided. 

 

 

Figure 5: Illustration of the Evolution of the Hazmat Scenario. Cargo ship V1 leaves much earlier 
than the arrival of V2 and V4 (a), and before V3 reaches its berth (b). As V2 leaves, V5 arrives (c). 

As we will see in the experiments, it is important that this information be the most complete as possible, to 
depict accurately the scenario with its entities and relationships.  

2.4.3 Results 

We aim to demonstrate how contextual information is a crucial key element to build an exhaustive and 
accurate situational picture, which allows to timely detect an anomaly. 

We imagine a situation as the one described in Figure 5 and Table 4. V1 leaves the harbour prior to the arrival 
of V2 and V4. After a while, V3 reaches berth B3, and it remains there when V5 arrives and moors at B2. 
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Table 4: Observed Facts (Evidence) in the “Hazmat” Scenario. The time of permanence  
of a cargo at its berth is calculated only with respect to neighbour cargo ships [8]. 

 

The fact that a ship is carrying hazardous material and the type of material can be classified as sensory data, 
as this information can be fetched on-the-fly when the ship becomes a vessel-of-interest or when the system 
registers the vessel. Also the time predicates can be calculated at runtime, comparing the ETA (Estimated 
Time of Arrival) and a minimum time of permanence to handle the ship content. 

All the cargo ships in our scenario transport hazardous material, but from contextual information Table 3 we 
know that the dangerous combinations are constituted by (M1, M2), (M2, M3) and (M2, M4). 

The query P(alarm(Vn,Vm)|M{L,C}) represents the probability for predicate alarm to be true for a given vessel 
couple (Vn,Vm), where M{L,C} is the Markov Network created by grounding the set of formulas L shown in 
Table 2, and contextual and sensory evidences are provided according to Table 3 and Table 4 respectively. 

Table 5 shows the possible risky combinations of hazardous materials carried by cargo ships that share 
adjacent berths and are moored in the harbour at the same time. Threats are marked with “Y”, while a normal 
situation is marked with “N” and should raise no alarm. Diagonal terms give no anomaly. 

Table 5: Dangerous Combinations of Hazardous Materials Carried by Cargo  
Ships that Share Adjacent Berths are Boldface and Marked with “Y” [8]. 

 

Hazardous material M1 is considered dangerous when combined with others, but as the cargo which carries it 
leaves before others, no alarm is raised. Materials that are brought at not adjacent berths do not constitute a 
dangerous combination, thus the couple (V4, V5) does not constitute a threat. 

Table 6 and Table 7 show the results obtained for this scenario. In both cases the evidence set is the same, 
but the contextual information is completely missing in the first experiment. When contextual information is 
provided, the reasoner sets an alarm in the case of (V2,V3) and (V3,V5), thus matching the truth (Table 5). 
Contrarily, no alarm is risen when context is missing, as the values for suspicious cargo ships are low. 
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Table 6: Results for the “Hazmat” Scenario Without Contextual Information [8]. 

 

Table 7: Results for Alarm Raising in the “Hazmat” Scenario [8]. 

 

3.0 IS CONTEXT ALWAYS A GOOD THING? AN INTELLIGENCE CASE 

As we have seen in the previous sections, context plays a fundamental positive role in the tasks of achieving 
results from inference processes about the items of interest. However, at the same time, de-contextualization 
of objects can be a necessary step in some cases, for example to achieve a successful selection of substitute 
candidates for tools that are unavailable, or whose presence is undesired. The following is a summarized 
account of our work on the topic with application in military intelligence, more details can be found in [14]. 

Hostile intent, capability and opportunity are known to be the three components analysts should look for in 
detecting potential threats [15]. Given the huge amount of uncertain information to look into, formulating 
credible hypotheses about potential threats has become even more difficult or impossible in the case of 
asymmetric warfare where the means for carrying out a hostile plan are often of unconventional type, thus 
defying all knowledge available from military doctrines.  

While intents could be hypothesized based on current intelligence information, capability and opportunity 
might assume the aspect of normal patterns of life as in the case of recent terrorist attacks (where significant 
disruption was obtained through non-weapon objects possessing explosive characteristics such as fuel tanks). 
Since opportunity could be guessed once intent and capability are known, we turn here our attention to 
determining alternative solutions for assessing capability. 

The urgent need for developing automated tools for intelligence analysis [15] should also push the 
development of alternative ways for encoding and exploiting knowledge in order to facilitate inexact and 
similarity-based matchings of hypothesized patterns in the knowledge-base. In particular, we propose to 
extend such ontologies with explicit recordings of physical features in order to capture the intrinsic 
characteristics that can match function-oriented queries. A mechanism of similarity mapping between 
ontology classes, using feature-based similarity measures, is discussed to drive the research and retrieval of 
artifacts which are possible substitute for the proper tool matching the sought after capability. Fusion 
methods and techniques, exploiting contextual data and information, properly suit for such problems which 
also often involve soft data issues [16].  

Our proposal starts from the analysis of the behaviour and of the ontological status of artifacts. Let’s consider 
the following situation, the so called candle problem, a cognitive performance test, presented by Gestalt 
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psychologist Karl Duncker in his thesis on problem-solving tasks, published posthumous in 1945 by the 
American Psychological Association. Test subjects are given the materials shown at the top of Figure 6  
(a candle, a box of thumbtacks, and a box of matches on a table), and asked to fix the candle to the wall so 
that, once lit, it will not drip wax onto the table below.  

 

Figure 6: Duncker’s Candle Problem. 

The test challenges functional fixedness, a cognitive bias, which predicts that the participants will only see 
the box as a device to hold the thumbtacks and generally will not consider it as a functional component 
independent from the perceived context and therefore available to be used in solving the task. The solution 
consists in emptying the box of thumbtacks, putting the candle into the box, using the thumbtacks to nail the 
box (with the candle in it) to the wall, and lighting the candle with the match as in Figure 6 (bottom).  

As previously said, the test was created to assess problem-solving skills and the so called “lateral thinking”, 
but we will not deal with its main evaluation purpose, rather we will focus on the mechanism of selection of 
the functional component, which we define “metaphorical”. 

3.1 Artifacts and De-Contextualization 
The role of context in artifact selection and exploitation is crucial but in a different sense with respect to the 
role usually played in fusion problems. Context is recognized to be fundamental in achieving tasks by 
providing expectations, constraints and additional information for inference about the items of interest [2]. 

On the other hand, in the domain of artifact “metaphors”, which involves problem-solving issues, context 
consolidates functional fixedness obstructing a possible solution as demonstrated by the candle problem. 

Moreover, de-contextualization of objects is the first step of a process of “creative” production of substitute 
tools often deliberately accomplished to perform malicious actions, the most macroscopic among the 
accomplished ones being the metaphorical substitution “Jet Airplanes” are “Weapons” in the 9/11 Twin 
Towers attack. 

3.2 Capability in Intelligence 
An interesting example for the application of metaphorical analysis and reasoning could be the field of 
military intelligence against asymmetric warfare activities. In general, in the military domain, there is often a 
more or less well defined “adversary” which could potentially carry on hostile plans. These can be 
considered a significant threat when they meet the threefold condition of: a) being driven by a clear hostile 
intent, b) being primed by a relevant opportunity, c) being supported by all the capability needed to bring 
them to completion [15].  
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Intelligence activities are therefore mainly concerned with assessing adversary intentions with the goal of 
detecting potential threats as they are being prepared. The task has shown to be particularly difficult in the 
case of asymmetric warfare where the adversary is purposely not following known military strategies and 
schemes in order to avoid early detection of own plans.  

Given the huge amount of data and information that intelligence analysts have to continuously process from 
very different sources, there is an urgent need for reasoning methods that can provide automated support to 
integration and analysis. Shortcomings in the ability to make deductions about missing and conflicting 
information and the current inability to support automatic context based correlation and reasoning about vast 
amounts of information are drawbacks to providing a coherent overview of the unfolding events [15]. 

In the case of asymmetric adversaries, this is complicated by the fact that hostile plans are not only covert but 
also carried out by unconventional means. This is particularly true in the case of capability, where 
adversaries often don’t exploit the designed and purpose-built tools, but some other tools whose features 
simply fit their hostile purposes. 

Figure 7 shows on the left the three components of a threat as defined above, and on the right the main 
processing steps that would be required to assess the capability of a hypothesized threat. The process 
involves metaphorical reasoning in order to detect possible alternative tools for reaching the hypothesized 
intent F. The process is iterative and involves: 

1) For each hypothesized intent (purpose) F. 

2) Abduce F -significant properties. 

3) Check context for artifact which maximizes capacity (the F-object). 

4) If NOT present: Extract from KB next possible candidate with sufficient capacity. 

5) Loop to 3) until F-object substitute is found or termination criterion is reached. 

 

Figure 7: Process of Artifacts’ Capability Assessing [14]. 

The process explicitly looks for the F-object that maximizes the capacity, but it could produce a ranking as 
well and evaluate alternative hypotheses involving tools that have not been explicitly designed for the 
purpose but that can be used by the adversary as unconventional means. 
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3.3 Discussion 
In everyday life as well as in asymmetric warfare domain, to achieve the intended goals, agents often don’t 
exploit the designed and purpose-built tools but some other tools whose features simply fit for the purpose.  

Starting from the ideas carried out to engineer ontologies for functional concepts of artifacts, we propose to 
extend such ontologies with explicit weighted recordings of physical features. A mechanism of similarity 
mapping, which will be object of our future research, between instances of property vectors, using feature-
based similarity measures, will drive the retrieval of artifacts that are possible candidate substitutes for the 
proper designed tool. 

Context plays a fundamental positive role in the tasks of achieving results from inference processes about the 
items of interest, namely regarding capabilities related to possible intents but, at the same time, de-
contextualization of objects is a necessary step to achieve a successful selection of substitute candidates for 
tools that are unavailable or whose presence is undesired for example because of a malicious action plan. 

4.0 CONCLUSIONS 
The exploitation of contextual knowledge has been discussed in IF applications for target tracking, situation 
assessment and automatic reasoning for military intelligence. While the first two cases provided clear 
scenarios where the introduction of CI improved system performance by weighting measurements 
/constraining estimates and refining the inference process respectively, the third one provides an example 
where de-contextualization allows to overcome functional fixedness and cognitive bias in reasoning. 
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